The Software Engineering Research Group

A part of the TU Delft Faculty of Electrical Engineering, Mathematics, and Computer Science

Our mission

The mission of the TU Delft Software Engineering Research Group (SERG) is to:

  • Develop a deep understanding of how people build and evolve software systems;

  • Develop novel methods, techniques, theories, and tools that advance the way in which software is built and adjusted;

  • Ensure that our research results have a lasting impact in software development practice; and

  • Offer students an education that prepares them to take a leading role in complex software development projects.

News and media

Example news post

Content

Upcoming events

Recent publications

Hybrid Multi-level Crossover for Unit Test Case Generation

State-of-the-art search-based approaches for test case generation work at test case level, where tests are represented as sequences of statements. These approaches make use of genetic operators (i.e., mutation and crossover) that create test variants by adding, altering, and removing statements from existing tests. While this encoding schema has been shown to be very effective for many-objective test case generation, the standard crossover operator (single-point) only alters the structure of the test cases but not the input data. In this paper, we argue that changing both the test case structure and the input data is necessary to increase the genetic variation and improve the search process. Hence, we propose a hybrid multi-level crossover (HMX) operator that combines the traditional test-level crossover with data-level recombination. The former evolves and alters the test case structures, while the latter evolves the input data using numeric and string-based recombinational operators. We evaluate our new crossover operator by performing an empirical study on more than 100 classes selected from open-source Java libraries for numerical operations and string manipulation. We compare HMX with the single-point crossover that is used in EvoSuite w.r.t structural coverage and fault detection capability. Our results show that HMX achieves a statistically significant increase in 30% of the classes up to 19% in structural coverage compared to the single-point crossover. Moreover, the fault detection capability improved up to 12% measured using strong mutation score.

Improving Test Case Generation for REST APIs Through Hierarchical Clustering

With the ever-increasing use of web APIs in modernday applications, it is becoming more important to test the system as a whole. In the last decade, tools and approaches have been proposed to automate the creation of system-level test cases for these APIs using evolutionary algorithms (EAs). One of the limiting factors of EAs is that the genetic operators (crossover and mutation) are fully randomized, potentially breaking promising patterns in the sequences of API requests discovered during the search. Breaking these patterns has a negative impact on the effectiveness of the test case generation process. To address this limitation, this paper proposes a new approach that uses agglomerative hierarchical clustering (AHC) to infer a linkage tree model, which captures, replicates, and preserves these patterns in new test cases. We evaluate our approach, called LT-MOSA, by performing an empirical study on 7 real-world benchmark applications w.r.t. branch coverage and real-fault detection capability. We also compare LT-MOSA with the two existing state-of-the-art white-box techniques (MIO, MOSA) for REST API testing. Our results show that LT-MOSA achieves a statistically significant increase in test target coverage (i.e., lines and branches) compared to MIO and MOSA in 4 and 5 out of 7 applications, respectively. Furthermore, LT-MOSA discovers 27 and 18 unique real-faults that are left undetected by MIO and MOSA, respectively.

Contact

  • Van Mourik Broekmanweg 6
    2628 XE Delft
  • Enter Building 28 and take the stairs to floor 4 on the west side